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ABSTRACT 

Normal mode theory is applied to undamped linear elastic 
structures represented as lumped parameter systems undergoing 
transitional motion in three directions. The derived equations 
are primarily concerned with the response of such structures 
subject to applied forces and base motions and the inertia forces 
required to calculate stress in each mode of vibration. Additional 
relationships are presented for special types of loading and for 
the effective mass acting in a given mode due to base motion. 
Similar equations are summarized in an appendix for structures 
with six directions of motion, namely, three translational direc- 
tions and three rotational directions subject to prescribed 
assumptions. 

PROBLEM STATUS 

This is an interim report on one phase of the problem; work 
is continuing on this and other phases. 

AUTHORIZATION 

NRL Problem F02-18 
Project SF 013-10-01-2960 (BuShips) 

Manuscript submitted September Z, 1964. 
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SYMBOLS 

A dot over a symbol in the text indicates differentiation with respect to time. 

Da
r( t) Duhamel integral for base motion, direction r 

F^t) applied force acting on mj, direction r 

Fj4 inertial force plus applied force at mj in mode a, direction r 

l.r impulse applied at mj, direction r 

N total mass of a structure 

nj apparent mass in mode a, direction r 

pj participation factor in mode a, direction r 

0r
a inertia force acting on mi in the mode a, direction r 

vo
r velocity step, direction r 

X,r absolute displacement of m. , direction r 

x.r relative displacement between rr^ and the base, direction r 

x[a relative displacement between nv and the base, for mode a, direction r 

x[a normal mode bhape for mode a, direction r 

r' base motion, direction r 

itli mass 

qa(t; time function for displacement 

t time 

&[s influence coefficient 

co natural frequency of mode a for an undamped multi-degree-of-freedom system. 

IV 



NORMAL MODE THEORY FOR  THREE-DIRECTIONAL MOTION 

INTRODUCTION 

In recent years normal mode theory has become more widely used and accepted as 
a tool for structural design and analysis. While the theory has been presented for uni- 
directional motion by earlier works, including NRL reports (1-3), it was feit necessary 
to extend the theory to structures undergoing translational motion in three dimensions. 
While no claim is made to originality of the essential contents of the report, many steps 
are included which often are not published in works dealing with the subject. 

The priuary concern of this report is to find the motions and inertia forces for cal- 
culating stresses of undamped linear elastic structures which are idealized as lumped 
parameter systems capable of undergoing translational motion in three directions.   The 
derivation of the equations is deliberately limited in the use of mathematical methods to 
those which are no more complex than necessary.  While this report is self-contained, 
Ref. 3 is especially recommended as reading material to precede this report. 

NOTATION 

! 

—i i 

I        / 
I     / 1  / 

Figure 1 shows the orientation of 
mass "■; with relation to the possible 
motions oi the base of the structure. The 
x axes, which describe the absolute mo- 
tion of a mass, are parallel to the z 
axes, associated with base motions. Note 
that the origin of the z axes is not located /    —[ —-7 .''(LONGITUDINAL! 
at a particular point; hence no loss of 
generality is made if the 1, 2, and 3 di- 
rections refer respectively to the longi- 
tudinal, vertical, and athwartshipsdirec- Z'IATMWARTSHIPSI 
tions of a ship.  It is assumed that n, is 
a point mass with no rotational inertia Fi^. 1 - Orientation of mass m, with 
and that there are n mass points repre- relation to the orientation of a ship 
SCnting the Structure. ^or    the    case   of   three-directional 

motion 

Representation of Displacements and Forces 

The general rule of notation for displacements and forces is as follows: 

A subscript refers to the mass point and the superscript refers to the direction of 
the displacement or force.   For example, x r represents the absolute displacement of n 
in the rth direction; F^ represents the force applied at m, in the s direction.  Note that 
1. j --   1.2 n while   r, s     1. 2. 3- 

Raising a Quantity to a Power 

The general rule of notation for raising a quantity to a power is as follows:  Always 
place the quantity inside brackets before raising to the power.   F"or example, to square 

.a the rule requires  (  a)
2. 

1 

-\j" 
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Summations 

Unless otherwise indicated, all summations on i, j, and k are taken from 1 to n. 
For example, 

n 

L - L ■ 

All summations on a are taken from 1 to 3n.  For example, 

L- L ■ 
m »» 1 

All summations on p, r, and s are taken from 1 to 3.  For exunple, 

L - L- 
t r"l 

All double summations are abbreviated in the following form: 

L - LL - L L■ 
i . r )       r j"!    r«I 

Influence Coefficients 

The influence coefficient ?[' reads as follows:  The deflection at i in the rth direc- 
tion due to a unit force at j in the s direction.  Thus, if a static force F.* is applied to a 
linear elastic structure which is attached to an immovable base, the deflection due to 
distortion of any point j on the structure in direction r is given by the relationship 

I    -   Xj    =   LS.^F,   . 

For applied forces at each mass point of the structure, this becomes 

Appendix A shows the influence coefficient written out in the form to be used for 
finding natural frequencies and normal mode shapes by the iteration method (4). 

For linear elastic structures. Maxwell's law of reciprocal deflections (5) holds, 
namely, 5" = 8"f. 

FREE VIBRATIONS 

Normal Modes 

Assume that a weightless structure attached to a fixed base is carrying a set of n 
concentrated masses which are attached at the n points i.  Consider its free vibrations, 
that is, the possible motions in the absence of external forces.  This is done by D'Alem- 
bert's principle, which states that a system in motion can be considered to be in 
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equilibrium at any instant if Kppropr]zte inertia forces -«J/ are allied to the system. 
For the case of the freely vibrating structure, simply apply these inertia forces so as to 
view the structure as being in a state of equilibrium. The set of forces on the structure 
is now treated as a problem of statics. 

Recall that for an elastically distorted structure in equilibrium 

For free vibrations the only forces on the structure are the inertia forces, so 

*; = - £*]:*&■ e) 

This is a set of ^n differential equations with constant coefficients expre^&'ng the X. 's 
in terms of the X.'s. Since there is no base motion, K? = xT and f/ = ic^. Equation 
(2) is rewritten 

%.; - - L »;: «j x; o) 

To obtain a solution try Xj' = x/ sin (wt + ß), vrtiich is usually done for the single- 
degree-of-freedom system.  Then 

X/   =   (a,)'   Z   «.""».Si'. (4) 

Equattoi (4) consists of three sets of n algebraic equations which are written out over 
the range on r as follows: 

x/ = WL (»i;..^ *81
,;.lx,i>8;;.1x1

ä) 

*;* w'z W »x ""-i*: **"->'>,') 

These equations can be further written out as 3n algebraic equations. Appendix A shows 
these equations written in matrix form. 

If a solution is to exist other than the trivial one where all the x/'s equal zero 
(static equilibrium case), it occurs only for those values of a> which make the determi- 
nant of the coefficients of the x/'s equal to zero (6).  This leads to an algebraic equation 
of degree 3n in (a>)2 usually called the frequency equation.  Since undamped structures 
are considered, these roots are real and positive (6).  These frequencies are called the 
fixed base natural frequencies of the system oscillating in the absence of external forces. 
For the systems where the roots of (w)2 are all distinct, the ratio of amplitudes of the 
masses can be found by the back substitution solution of the set of equations, which set is 
defined by 

^r, = K)2 L s" "-ix;. (5) 



4 NAVAL  RfSEARCH LABORATORY 

The x) a are called the normal mode shapes and are defined by Eq. (5) for each mode n 
in each direction r. 

Those systems which have a pair or more of equal roots are called degenerate sys- 
tems.  Other techniques for solving such a set of equations treat them as an eigenvalue- 
eigenvector problem, which is a characteristic value problem with latent roots.   For the 
degenerate systems, back substitution in Eq. (5) does not produce the set of mode shapes. 
Other techniques such as matrix deflation or special forms of adjoint matrices can be 
used.  It is assumed that these mode shapes can be found in order to proceed. 

Orthogonality of the Normal Modes 

To establish the orthogonality of the normal mode shapes, multiply both sides of Eq. 
(5) by m. Xj',, and sum on j and r.  This gives 

L   rr.   X .   X.      z    ( ■   )2   L   '"    X,    L T-   X. 
I        ! IT 1.5 

^    ( .    )2    L   rr.   "XS      Z      " m    X' (6) 
i    s 

rs sr        .. 
since ■.   =       . Also, 

-s .     y       ST ~ r 
X.K    --    ( c.)2    L      . .   m    X,, 

ib v    b' i j      j      jb 
j    ' 

by Eq. (5).  Equation (6) becomes 

I   .    T 1   .   S 

Since i and .j are now dummy subscripts as well as r and s, 

)     m.  X.,   X.      r   0 . 1   - 
V 'b 

There are two possible cases:   b = a, or b i a.  When b = a the term in the brackets 
becomes zero and the summation becomes 

This is a series of positive terms which cannot be zero.  When b ^ a, the term in the 
brackets is not zero, so that the summation term must be zero.  This yields the orthog- 
onality coiiditions 

L m,rx;a)21 o (?) 

P,  m>   X]h \e        0.      ai  h. (8) 
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Note that these orthogonality relationships include a double summation, that to, the 
usual summation of all mass points as experienced *JI the unidirectional system and the 
additional summation over the three possible directions of motion. 

Type of Normal Mode Solution 

The distortion of the structure is completely described if the set of x/'s is found. 
Let the time mode response at point i be xr . The total response x/ can be found by 
superposition, that is, 

X;      =     I   X:.. 
I 

At each i in each mode a there is a relative amplitude of x[a. There must be a function 
which converts the x[a to x[a.  That is, a solution will be sought in the form 

<. = *[. ". 

so that 

*i  =   £ Ks i. (9) 

and 

*/ = £ K* q- do) 

If qa is found, the free vibration problem is solved. 

Substitution of Eqs. (9) and (10) into Eq. (3) yields 

Zd X'     Q     s   -    Zrf    8..   m-   2^ X"     ä    . 

By transposition 

Z:(qa   L   S^'mj  X^ + X;a qa)  =   0, 

and by use of Eq. (5) this becomes 

?[: a' 

+ q. xja -- o. 

Multiplication of both sides by n^ xj,, and summation over j and r yields 

q.       i y L i-    n       I     / m       T +  q, I /      m.   XiK X;.   =   0 . 
«      Lv     1' J    j . r 

There is only one case when the summation over j and r is not equal to zero: when 
a - b. The summation over the modes is then reduced to 
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This has the solution 

q.(0) 
q,   =   qa{0)  cos -.t   +   ——   sui   .„t (12) 

""a 

Returning to Eq. (9), 

Xi      --   L-aXim t'.(0>   COS      ^   *  L-sXi*   —   Sln    '.t (13' 
a ■ 

Initial Conditions 

Assume that the general initial conditions at t = o are x/ - X^(0) and xi  = Xj'cO). 
Equation (13) yields 

X^O)    '-    L 7[a  q,(0) . (14) 

Upon differentiating Eq. (13) and introducing the initial condition on velocity, it's yields 

X^O)    =    L X[. q,{0) . (15) 

The orthogonality relationship can now be used by multiplying both sides of Eqs. (14) and 
(15) by nvj x[b and summing on i and r: 

Z »X* xir(0) = ^ ^o) £ mi x.rb x[. i . r ■ i . r 

L mi Xib k'(0)   --   L qa{0)    I   m.   X[b xj, . 

Therefore, 

I mi X\m Xj'cO) 
q'(0)   =   "V      777- (16) 

L m, X;a X^O) 
VjO)   -.    ^ (I7) 

Substitution of Eqs. (16) and (17) into Eq. (13) yields the complete normal mode solution 
for free vibi-ations: 

X.     :       )        L^J cos ,v  +     >        LJ         sin „^ . (18) 
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RESPONSE TO AN APPLIED FORCE 

Consider a structure which rests on an immovable base, and suppose a force Fk
r, 

applied to mh, is time dependent but independent of structural reaction.  Using D'Alem- 
bert's principle and influence coefficients, the distortion of the structure is described by 
the 3n equations 

xi -  .^    M ***>   ♦^ju^v (19) 

A solution of the form 

X 
r .  Ix ^x..q. 0) 

is sought.  Substituting Eq. (9) into Eq. (19) yields 

L Xj. q.   =   -   I q.   I    S[' m.i  X*, ♦   L 5^ p/ 

Transposing, 

? (i. x;. + q. i ill mj x'.).- i §;• F; . 

Using Eq. (5) this may be written as 

?[^H^ 
=
 ?

8;:F; (20) 

Consider expanding the expression on the right side of Eq. (20) into a series of mode 
shapes.  ' .et 

is;^; = ix;. !<.. (2i) 

Multiplying both sides by m xr
b and summing on j and r yields 

i(i.,x;b8;:)F;= r <,(!„, s;bX;.). 

... r g s r Using ijk . sk., 

? (^ ^; "i x;b) F; -- ip <. (i.. x-;, x;.). (22) 

The left side is reduced by Eq. (5), that is. 

L 
—» 

s»r -r Xkb 
e. ■  m-  X- 
"i-i-ib    -     (u>h)2 

The summation over the modes in the right side of Eq. (22) reduces to simply a by virtue 
of orthogonality.  Thus, Eq. (22) is rewritten 
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•       '    ■' p j . r 

Therefore, 

z: \P. 

r^  —«        i 

(".>2 i
z:

f
n,i(x;.) 

(23) 

Equation (21) becomes 

L ^ = L - 
Xi« ~ Xk« Fk 

Since each component of Fk* is independent, that is, the magnitudes F,,
1
, Fk

2, and Fk
3 are 

separate and independent of each other, an expansion in s on each side of the equation 
leads to 

i       l —r     _» 

(24) 

This defines the influence coefficient in terms of the normal mode properties of the 
structure for translational motion in three directions. 

Substituting Eq. (24) into Eq. (20) yields 

Li^^'Y^-L — - <-.>' z 4?.)' 
Transposing, 

L <** 
+ «>« 

Now the orthogonality relationship is applied.  Thus, 

*,» "- o 

z: ^„F, 
s -I 

^+ q- - 
(-a)2   f^.K-)' Z-r^i- xib =  0 

Therefore, 
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^*(.a)2qa  =  -T-——T  - (25) 

Equation (25) is in the form of the equation of motion for a single-degree-of-freedom 
system, thus having separated each normal mode.  The particular solution is written by 
sight, using the Duhamel integral form for the single-degree-of-freedom system.  Thus 

—-1—-3    f'   [£ Xk
S
a F.VnJ   s.n     a(t-T) <n. 

The desired solution is then 

X;   =     /       ^ -2 f    [I Xk
S
a Fk

S(T)l   s.n  .a(t - T) dT . (26) 

If more than one force is applied at different points throughout the structure at the 
same time, say d points, superposition is used to solve the problem.  Since the deriva- 
tion assumed the force to be applied at mk, sum the d applied forces. In this case the 
particular solution is 

X;   --    / — -^f       I   Ixk
S
aFk

S(T)    Sin^(t-T)dT. (27) 

8   ..p      'V   18/ 

To find the general solution add the complementary solution represented by Eq. (18) 
to the particular solution of Eqs. (26) or (27). 

RESPONSE TO BASE MOTION 

Suppose a structure initially at rest is attached to some base. Assume that this 
undergoes a translational motion Zr( t) which is a known time-dependent function. 

Consider the equations of an elastically distorted structure: 

x.   -   L Sij F, . 

Using D'Alembert's principle, this becomes 

X,     =   -    L   h^  mj  Xj    . (25) 

Since %.* =  x/ - Zr, Eq. (28) is written 

x/ - - L ^;mj(x;+r) (29) 

where Xj   represents the components of relative acceleration.  Let 
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and substitute this into Eq. (29): 

M X-    a     =   -   i*   S ■ - K ■   Z< X-    Q    -   u   S - ■ m -  Z (30) 

With use of Eq. (24), the last term of Eq. (30) can be expanded in its normal modes, that 
is, 

X-.    L,    IJ.;   A-.  Z 

4^   '    v.-..'^.^.)" 
Substituting this into Eq. (30) and rearranging terras leads to 

L "a i . • 
z: n.j x^z 

X;.     =     0 

The orthogonality conditions give 

q. + C^.)' q. 

Z—■   s» »j^.Z 
) ■«     '    * 

(31) 

This equation is in the form of the equation of relative motion for a single-degree- 
of-freedom system if there is a base motion and no applied force. The particular solu- 
tion of Eq. (31) is 

q,   = r I     r £  nij  X*, Z'd)!   sin a; (t -T) dT , 

which gives the relative motion of m. in the r direction as 

The absolute motion of m: is 

(32) 

11 "z'-Il ~rfrYl [-ffli';'r(T)]sin ^ -T) dT (33) 
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Recall that the origin of the Z axes is not necessarily located at any particular ref- 
erence point. This is doe to the form by which base motions or inputs are usually pre - 
scribed. The inputs may be given in one, two, or all three possible directions of motion. 
For example, suppose the base disturbance is prescribed in the longitudinal direction 
only.  The motion of nr in the vertical and athwartships directions, each of which is per- 
pendicular to the longitudinal motion, represents absolute motion.  This agrees wiih Eqs. 
(32) and (33), since each equation is the same for finding the absolute response in the 
vertical and athwartships directions, while Eq. (33) gives the absolute response for longi- 
tudinal motion. 

SPECIAL TOPICS 

Impulse 

Consider the impulse ik
r applied at mass k.  The normal mode solution is 

•:-L sin a>.t 

r* *. .£ n.^.) 

where lkt ik , and ik are the amplitudes of impulse in the 1, 2, and 3 directions, re- 
spectivaly. Upon differentiating, 

—r    y» _»        s 
Xi.4'Xk«Ik 

^ £ -.m' 
COS   Cüat (34) 

Since the structure rests on a base and the masses were assumed to be capable of inde- 
pendent movement, the velocity of mj must be zero at t = o, so that 

L 
Xi« Y XK" lk 

Suppose the impulse is applied only in the I direction, so that the above equation 
becomes 

z; _r    _I        1 
Xi» Xkalk 

=   0 

Since ik  is not zero, this reduces to 

r _r     _1 
Xi«  Xki 

^ p. »,(*:.)' 
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Likewise, if the impulse were applied in the 2 and 3 directions separately, there results 

^ 1 _r     -2 z'       -.1 

~  --   0 

v £ «K.r 

L 
-t     —3 
Xi« \m _    _ 

These three egressions can be represented more generally as 

L ^im \a 

^    £   m,{X%) 
k   k. (35) 

Similarly, the velocity of the mass which is struck by the impulse applied in the 1 
direction is lk

l n^ in the 1 direction and zero in the 2 and 3 directions att = o.  There- 
fore, with reference to Eq. (34), 

- / Xka  Xka ^k 

F — — 2      —1 I 
Xka  XVa£k_ 

^ ,£ •&: j. p   -•5 —' 

L ^ = o. 
Xka Xka *k 

r'Z'.tt-) 
Similar equations can be obtained for the impulse applied in the 2 and 3 directions.  The 
resulting equations in general form are 

L 
— r     _s 
Xka   Xka  ___^ 0. MS (36) 

P, ".(S'.)' 
1 
^ •        r"-s ' (37) 

Sudden Motion of the Base 

Consider the response of a structure initially at rest to a step change in the base 
velocity.  Let zo

l, Z0
2, and z0

3 comprise the components of this step change.  The normal 
mode solution is 
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< -L  — "»    .* (38) 

Thus, if the step change in base velocity occurs only in the 1 direction, Eq. (38) becomes 

X;     ^    -     /        ■    cos       t . 

At t     o, the absolute velocity of each mass is zero, so that the velocity relative to the 
base is -7-c*. Therefore, 

-1    y       -1 

 ' .    1 L 7- h -.(i;.) 

 i  -   o V 

L 
~3    y        -l 
Xi,^'nj   Xia 

^ £ -tf.) 
Similar expressions can be obtained for a step change in base velocity in the 2 and 3 di- 
rections.  The general equations which result are 

L   '  0-       r+s (39) 

-    I, r-s. (40) 

Define as the participation factor 

^ "i *.' p     ~   _J  
' ' (41) 
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so that Eqs. (39) and (40) can be rewritten as 

^i- p*   '-  0 ■      r * s W 

.    1 . r . s . (43) 

Now sum over (43), so that 

V   —r r 

Equivalent Forces for Base Motion 

As a final special topic let FJ = -mk Cr( t), in which the foice on a mass is propor- 
tional to that mass. Assume that such forces are applied to each mass and cr(t) is not 
a function of k.  Then Eq. (27) becomes 

^--^-.{[l^^Cmjs., 
■ £ *KJ 

(44) 

This is precisely Eq. (32), if cs(T) = ZS(T).  Therefore, the displacement response for 
many applied forces can be converted to the relative displacement response due to base 
motion by substituting FU

S(T) - -mkz
s(T) and summing over all k, 

INERTIA FORCES 

Single Applied Force 

In order to calculate for stress, it is convenient to determine the inertia loadings 
that the masses apply to the structure.  It has been shown that each normal mode acts as 
a single-degree-of-froedom system with certain characteristics.  If the absolute accel- 
eration of each mass point m. is found, the inertia forces can be added to the structure 
as a loading by D'Alembert's principle. 

Consider the case of an applied force at mk with no base motion.  The qa equation is 

V - s s 

a / 2 L. "sfe 
Solving for n(1, 

V" —s s 
?Xk8

Fk 

?. -.(■*;.) 
-   ('"u)2**- 
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Since 

then 

— r     V^ —s s 

^ £ -"Ax,,)   ^ 

Rewrite Eq. (45) using Eqs. (35), (36), and (37).  Thus, for any mass but the kth mass 
(where the force is applied) 

and for the kth mass 

r 

- r •• f k ^^ i   —r 

** -- K  -- ^  ■ L <^2\'<**' 
K a 

The inertia loadings are 

Q.'   =    L (^a)
2 mi Xla qa.    (iik) 

These forces describe the inertial loadings for each mass point. At mk, there is an ap- 
plied force Fk

r.  The sum of the forces on  mk is the net applied force 

QJ + Fk
r   =   £ (^)2mk X^q.. 

The structure is therefore loaded in mode a by a force system of the form 

Fu = ("j2 mi K, %' for ai1» (46) 

where 

 Y ^ Xka F^T) j   sin Wt - T) dT 

This force system described by Eq. (46) may be used to calculate stresses in the struc- 
ture for each mode. 
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Many Applied Forces 

Consider the case where there are many applied forces acting on a structure which 
vary as different functions of time.  The qa equation is 

k = 1     i ,        s 2 
qa    r     —7   '   ' '*)    % 

so that 

d 
Xia    ^   L Xka

Fk 
^r ..r k= 1    i ,   --r 
x.a . xit = — - (.ar Xi, q8 

x: 
——j f^xi.F.1 + ix;aF2

s + ••■ + IX^F;)- (.'a)
2 X^ qa. 

Upon summing over the modes all terms in the series expression are zero except when 
r - s and d = i, according to Eqs. (36) and (37).  Therefore, 

m a 

The inertia loadings are 

m 

The net force acting on each mass is 

Oi' +F;  =  Li-',)1^ x[a qa. 

The structure is therefore loaded in mode a by a force system of the form 

F[a   ^   (.a)
;! m, X[eqa,      for  all   i (47) 

where 

.< r  d 

"a    ^    mj(Xj,a)        0 •'ft 
' \*hr^ sin   -'a( t - T) <iT . 

This force system described by Eq. (47) may be used to calculate stresses in the struc- 
ture for each mode in the case of many applied forces. 
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Base Motion 

Consider the equation of motion in one direction for a single-degree -of-freedom 
system subject only to base motion in that direction: 

X ^ ( o2x  -   - z. 

The absolute acceleration is therefore 

X   --   X ♦ 2   -    - ( .)2 X . 

In an analogous manner, the absolute acceleration in mode a for the type of structure 
under investigation is 

and the inertia forces are 

<?[. =  (*y "i x.'. --   (ij^i xiaq( 

where 

I       \L   mj  X*, ZS(T)j   sin ^ t - T) dT 

by Eq. (41).   Let 

Da     =    "a j    Z(T)   sin cjt -T) dT . (49) 

Equation (48) becomes 

v    a'        > 

The inertia forces in mode a, which are the net effective forces for calculating stress, 
can be rewritten 

Ka ^ <?[» ^ -•". xL i p; D;. (50) 

EFFECTIVE MASS WITH BASE MOTION 

To determine the effective mass present in a given mode of vibration for a structure 
subject to base motion, consider the net effective force in mode a at n^ : 
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F.r
fc  ^   <?!« m

1 *ls Ip/ D.S (50) « 

The total force acting in mode a in the r direction is 

F;   -1 m. x,', i p; D; (SD 

For the single-degree-of-freedom system this becomes 

F   =   -MD 

where u is the mass of the structure and 

D   =   -  [   Z( 
■'A 

T)  sin   x<t -T) dT. 
o 

Equation (51) is now expanded to give 

F, --   - Lmi  Xia P. D. - L ^ Xia Pa Da - 1 m.  Xia Pa Da (52) 

Since the components of the base motion are independent of each other, Eq. (52) gives 
the mass acting in the r direction due to motion in the s direction for mode a as 

r s »-• —r 
M.     '-    L m,  X;     P (53) 

For example, a base motion in the longitudinal direction causes mass to act in a mode 
in each direction as follows: 

i i V -1 • 
i      i a     a 

mass in the longitudinal direction; 

21 y -2 1 
M.      -   £* m;  X;„ P-   . 

mass in the vertical direction; 

3 1 *-' -3 • 
Mfl     --   Lm, XiePe . 

1 

mass in the atbwartships direction. 

The latter two terms, namely M^
1
 and M^

1
, might be called the cross-mass terms. 

It can be shown that 

Ma M8    ,       r M • (54) 

If the masses are summed over the modes, there results 

M"    =   L m.   L x!    P '   =    Z m.        M 
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2\ 
M £<«. L x;a pj   o 

M31   -    I m.   I x'    P. 
i a       a 

using Kqs. (42) and 03) 

Similar statements can be made for base motions in the vertical and atbrvartships 
directions.  The summation over the modes of vibration can therefore be generalized as 

Mrr      M (55) 

M"  -  M"      o. (56) 

Equation (55) indicates that the sum of all the effective masses acting in the r direc- 
tion due to motion in the r direction for the total number of modes is equal to the total 
mass of the actual structure.  Since M" is always a positive quantity, a calculation of 
the amount of mass remaining in the higher modes can be made after the lower modes 
have been found. 

SUMMARY 

The essential relationships have been derived for studying translational motion of 
three-directional lumped parameter systems based on normal mode theory.  The ap- 
proach used to develop these expressions is an extension of an earlier report (3) on uni- 
directional normal mode theory. Appendix B summarizes the equations of normal mode 
theory for the case of each mass having six directions of motion, that is, three transla- 
tional directions and three rotational directions. 
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Appendix A 

MATRIX FORM OF  LUMPED PARAMETER SYSTEMS 

The relationship between normal mode shapes and fixed base natural frequencies is 

r i     V-       r * - s 

(5) 

The mode shapes in each of the three directions of motion are related as follows: 

j» 

(^.r 
} II    -I     )    12 2 ) '  13    -J (Al) 

_2 
V^  21    -J    V  2 2    -2    V^  2 3    -3 
Z^ *M mi Xi. f Z^ ?ii m. Xi. f A. M mi  xia 

(A2) 

xj. /    J*    ='     /    3Z     -2     )    3 3    -3 
i_-i  )t  i  ia  i__i  ii  i  la   L—i     JI  i  ta 

(A3) 

Each of these expressions has a range of n, so that there are a total of jn equations 
represented by Eqs. (Al)-(A3).  They can be written in matrix form as 

f^,)' 
'X'}    =    [i'MimllXn   +   [:,2]lm^\^   +   [*13][m]<XJ} (A4) 

(^.) v2 
{X2}   -    [^'JltnJiX^  +   [i2J]im]iX2}   +   [«23][mjiX3"' (A5) 

(«,)• 
{X3

f    =    [^'IWtX'}  +   [ä32]!m]{X2}   +   [^HmliX3} (A6) 

where, for example, 

{X1} 

20 
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'.II'. 

L«J 

11 

11 

I i 

II • • 

ii 

In 

11 1 1 .M 
21 ■ 22 • ' 2n 

11 

nl 

1 1 

' n 2 " ' 

i 1 

' nn 
*— 

"I 0 ... . 0 

0 m2    .. . ü 

0 0 • "n 

Equations (A4)-(A6) can a)so be written in matrix form as 

CO' 

{X'} 

{X2} 

{X3} 

[i11]   [±17]   [SM] 

[,21]     [Ä22j     [.23] 

[;"]     [h3i]     [h3i] 

[m] 0 0 'X») 

0 [m] 0 -x2- 

0 0 [mi {X3} 

This expression written out in its entirety is as follows on the next page. 
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Appendix B 

EQUATIONS FOR SIX-DIRECTIONAL NORMAL MODE THEORY 

NOTATION AND ASSUMPTIONS 

!.  The structure is attached to a fixed base and is represented by n lumped masses, 
each mass being capable of translational motion along three mutually perpendicular axes 
and rotational motion about each of these axes. 

2. Each mass has dimensions, so that it has rotational inertia. 

3. Figure Bl shows the orientation of the ship by the primed coordinates (fixed axes) 
and the axes of orientation for mass mi of the structure (moving axes). In addition to the 
usual translational motions given by the 1, 2, and 3 axes, the 4, 5, and 6 directions repre- 
sent the angular motions about each axis, respectively.  Thus, x/, x/, and x^ are the 
components of translational motion of mj, while x*, X?, and X* are the components of 
rotational motion of m.. 

2'(VtftteoO 

«'(LongitudinoO 

SUthwartthip«) 

Fig. Bl - Reference axes for orientation 
of a ship and mass mi for the case of six- 
directional motion 

4. For the purpose of developing the equations of motion of a body about a fixed 
point, let 6/ = Xj4, o* = x^, and ß? = x/*. 

5. Let li    be the moment of inertia of mi about its r axis and Ij    be the product of 
inertia of mi about its r and s axes. 

6. It can be shown* that the angular momenta, H^, of a body with respect to its mov- 
ing axes are 

♦ S. Timoshenko and D.H. Young, "Advanced Dynamics," New York:McGraw-Hitl Book 
Company, Inc., p. 332, 1948. 

23 
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I 111 12-2 13-3 

H.    -I,       i   -  I,       i   -   I.       . 

2 21-1 22-2 U     . * /„,» 
H. .1. ;       -     1; -       -      I. . (Bl) 

2 3»-l 32-2 33-3 

7.  Select the 1, 2, and 3 axes of mi as the principal axes so that the products of 
inertia are zero and Eq. (Bl) reduces to 

H/.  i'1 •• 

H2  =   I" ' 2 (B2) 

3 33    •  3 

8.  The principle of angular momentum states that the rate of change of the angular 
momentum of a body rotating about a fixed point is equal to the moment of all forces 
acting on the body with respect to the same point.  After taking into account the rate of 
change of the angular momenta with respect to the 1, 2, and 3 axes and the fact that the 
1, 2, and 3 axes are also rotating about a fixed point, the following equations result: 

dHj 

dt 

•   2 •     3 

\   Hi   - 
■   3         2 

, "i 
i 

=  Nj 

dt 

•   3          1 
i   H,   - :!«: 

2 

dt 

•   1         2 

i   Hi    - 
3 

(33) 

where  N; is the moment of all forces acting on the body about the r axis.  Substitute Eq. 
(B2) into (B3) to get 

dr' 11   dr.'. /   33 22\    •   2        3 I 

h ^r + (ii - h )"i  i - Nj 

•  2 
2 2   <i(': /    i i 3 J\    •   I    '   3 2 ,nAi 

I    +1 -    I ' f =     N (B4) 

d^ 33"": /22 11\-1*2 3 

dt 

These equations are called the Euler equations öf motion. 

10.  For small oscillations assume that the terms containing the product of the t''s 
are small compared with the other terms in Eq. (B4)<, so that 
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11 

22 
-   N. 

. 3 3   •■ 3 3 

Using the notation of Fig. Bl for m., these equations become 

4-4 4 

■■ i,' N; (B5) 

6-6 
I.        X; 

where, for example, li   is the moment of inertia of mi in the 4 direction (or about the 
1 axis) and x.4 is the angular acceleration of mi in the 4 direction.  Equations (B5) rep- 
resent the relationships between the inertia torques and the applied torques for equilib- 
rium about a fixed point.  These inertia torques along with the inertia forces will be used 
for the free vibration problem of the structure under investigation. 

11. Since the axes of each mass are the principal axes, the axes of different masses 
are therefore not necessarily parallel to each other.  This requires a new definition of 
the influence coefficient   *[' as the motion (deflection or rotation) of mi in the r direc- 
tion of m; due to a unit load (force or torque) at m j in the s direction ol m .  For exam- 
ple, 11 is the deflection of m   in the 1 direction of m. due to a unit force at m   in the 1 
direction of mr Note that the 1 direction associated with m. is not necessarily parallel 
with the 1 direction of m . 

12. It is assumed that the change in geometry of the structure is small during its 
dynamic response under the action of external forces and torques.  This means that the 
influence coefficients calculated for statical loads on the structure with respect to the 
principal axes of each mass are used to find the dynamic motions while the axes are per- 
mitted to translate and rotate with each mass. 

13. Define the direction cosine between the r axis and r' axis at mi as 

, rr' 
^ j        -   cos^r, r') . 

Assume that during the structure's dynamic response the direction cosines remain 
constant. 

NORMAL MODE EQUATIONS 

The equations of motion for the free vibrations of the assumed structure are written 
using D'Alembert's principle and treating the inertia forces and torques as the applied 
loads. 
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r>       5   •• s x,   -  - I I   ^ ">. x,  - I I   aji I.  X, 

r - 1. 6 (B6) 

where I.* = mj for s = 1, 2, and 3. 

Equation (B6) is precisely the same as Eq. (3) except that the range on the direction 
of motion includes six independent coordinates for each mass.   The normal mode equa- 
tions    r this case are now summarized from earlier results of this report, where sum- 
mations on r, s, and p are from 1 through 6 unless otherwise indicated and the summa- 
tion on a is from 1 to 6n: 

Mode Shapes and Natural Frequencies 

Xj. :  i*,)1  L  s^ I,  X,, ar 1. 2 6n (B7) 

Orthogonality of Normal Modes 

L i;{r)f)
2 * o 

1 . r 

Zr   _r     —r , 
h   X^ Xjb   =   0.        a i  b 

(B8) 

(B9) 

Response for Free Vibrations 

■■■I 
s —s s 

X[. .2 Ij   Xja X^O) 
,S   c.8t    +       / - 

x^ L i,  xia \,(0) 
sin u, t.     (BIO) 

pf^p y v   pi—p \ 

Response to an Applied Force and Torque at 

r \ 

^—'   a,     I   IP(XP   ) 
• •   i ,p     ' \   '■/ 

xr r* r J - 6 - -L1-,—-2 f   £ x;;a F;(T) + i xk
s
a N^D sin    ^(t- T)  cfT. (BU) 

Response to Many Applied Forces and Torques 

Assume that there are d applied forces and h applied torques; therefore, 

x; =7"—^—i ("'[££ ^8 F;(T) + t i CN^T) sin^t-DdT. (B12) 
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Response to Base Motion 

Consider the case where translational base motion is the prescribed input referred 
to the axes of the ship, namely, the primed axes shown in Fig. Bl.  If each mass of the 
structure is loaded with the set of forces -mkz'', the response of each mass is the same 
as for the case of many applied forces.  However, this response Is now the relative mo- 
tion between each mass and the base. 

Figure B2 shows the forces acting on nii oriented with respect to the primed refer- 
ence axes.  To transform these forces along the principal axes of mi, use the direction 
cosines between the axes r and r' at m..  The transformed forces at mi in the r direc- 
tion are 

- L , r r      - r *._    z (B13) 

2'(Vtrticd) 

I'lLonqnudinaO 

S'lAtlwortthip«) 

Fig. B2 - Forces acting on m for finding 
the response due to base motion for the 
case of six-directional motion 

Use this summation to represent the forces acting on the structure.  With reference to 
Eq. (B12), the relative motion between mi and the base in the r direction is therefore 

h-T    *:-   5(III t%K.<•'r'™]^v.-T» 
T- ■. S ■.P(^.) 

dT . (B14) 

Special Topic — Sudden Motion of the Base 

Consider the response of a structure initially at rest to a step change In the trans- 
lational velocity of the base.  It follows from Eq. (B14) that 
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3 3' 
„r   5"  y   y        _»   ,s'.■ -s' 

k    t-1   J'= 1' 
X :       - /  -■_- -r          COS     .at .d15) 

IP        *       ' 

where z0   , z0 , and z0   represent the amplitudes of the base translational velocity in 
the 1', 2', and 3' directions, respectively.  The six components of velocity defined by Eq. 
(B15) are now treated as two separate groups, namely, the three translational components 
and the three rotational components. 

The translational components of velocity response are treated first. At t = o, the 
absolute translational velocity of each mass is zero. To find the initial relative transla- 
tional velocity of each mass with respect to the base motion, transform the base motion 
into the direction of the principal axes of each mass as follows: 

X,(0)   = £     *"' K',       r.1,2. 3. (BX6) 

Substitute Eq. (B16) into the left side of Eq. (B15) for t = o: 

3 3' 

(B17) 

Since the components of the base velocity are independent of each other, it follows that 

3 

xja/_ Z_ ""k xk8 tu 
k      1=1 

/ .  i S ^J 
r=1.2.3. ^18) 

Let 

s mi. xL 

^ka (B19) 

BO that Eq. (B18) becomes 

r'   -   LX'E   L   PL*:''.       r-l.2.3. (B20) 
",   k    .= i 

In the case of rotational motion, the rotation of the base is zero, so that the initial 
relative rotational velocity of each mass is also zero; that is, 

X/CO)   =   x/fO)   =   0.      rM, 5,6. (B21) 
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Referring to Eq. (B15) at t 

i       i 

"I   X,;.  Z-   Z-      Z-        mk    Xka      k Zn 

L .•w.r 
I      V        I   il / 

Since the components of the base velocity are independent of each other, this becomes 

LK*  L   L  PL    T 0 r    4, 5.6:   s'     r. 2'. 3' (B22) 
. k s      1 

using Eq. (B19). 

STRESS CALCULATIONS 

To calculate stresses in the structure, apply the net effective forces and torques at 
each mass point for each normal mode of vibration. With these loads acting in each 
mode, the stresses can be calculated for each mode throughout the structure, and the 
final stresses are obtained by superposing over the modes.   This approach is the 
same as followed earlier in the case of translational motion in three directions only. 
The net effect of forces and torques for special cases are summarized as follows. 

Single Applied Force and Torque at m. 

(^^hK^t {B23) 

where 

<).. -.( 

> r j 

y Tp(yP y ^ —  I.iX 

I   XkaF^T)   -   I   \a VT) sin    ■   ( t -T) f)T 

^i«; 

Many Applied Forces (d)  and Torques (h) 

f.a    "     ^a)2I1     Xla  qa 

where 

(B24) 

1« -J I 
*Zii[tial 

■ f 3 h 6 

I   X.     F.fT)   4    21    L   X.B N, (T) 
k     1     s     I k     1     s     4 

sm   ,   (t -T) (iT 

Base Motion 

(•a)2li xifl q« (B25) 
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where 

EFFECTIVE MASS WITH BASE MOTION 

To find how much effective mass is acting in each normal mode of vibration, first 
consider the effective force in mode a at mi from Eq. (B25): 

FI.   .   (c^mj Si. q..      r--1.2.3 (B26) 

where, using Eq. (B19), 

j      i 

'■   =   "  <u x2 Z-. Z_J Z-.     ^      pk« D« 
v    «' k       i-I    i'»l' 

(B27) 

in viiich 

I    =   w, J    Z' (T) sin «Jt-T) dT. (B28) 

These forces are transformed to the primed axes (orientation of the ship's motion) as 
follows: 

3 

K.  =   E < TF[.-     r' = l'. 2'. 3'. (B29) 
r'l 

Substitute Eq. (B26) and (B27) into Eq. (B29).  This gives 

3 3 3' 

r' V   .''*        -'     V    V     T      .»»'     »       »' 
Fi. = - 2- «i   «i Xi.LL  L   iv   pk. D. . 

The effective force acting in mode a is 

i r=l k       i=l    »'=1' 

so that the effective mass acting in the r' direction due to motion in the s' direction is 

i r"l '••     k      1=1      k "" 

The cross-mass terms are again symmetrical, that is, 

r=l k      ««I    i'M1 

3 3 
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*.''   --  uy'.      r'^'. (B32) 

Qmsider the summation of the effective masses over the modes: 

m i r = 

With reference to Eq. (B20) this reduces to 

i r= 1 • k       »- 1 

1 

i r=I 

It has been shown * that 

3 
.rr      .ft 

I* i 

=   0 .      r'is' 

Since 

Eq. (B33) becomes 

< ' -  <T 

r   s T- 
i =     / L m^   =   M, r   = s 

=   0.        rf s' . (B34) 

As in the case of three-directional motion, the total mass acting over the modes in the 
r' direction due to a base motion in the r' direction equals the total mass of the struc- 
ture, while the summation of the cross-mass terms equals zero. 

The torques due to translational base motion are now treated. It is necessary to 
introduce new notation for the angular acceleration and the moment of inertia. In addi- 
tion, matrix notation will be used in transforming the torques from the principal axes of 
each mass to the ship's orientation. 

For angular acceleration, let 

This is necessary since direction cosines are used which refer to the 1, 2, and 3 axes 
and the 1', 2', and 3' axes.  Likewise, Nj!, N*, and Nj3 now represent the torques at 
about the 1, 2, and 3 axes, respectively. 

The direction cosines are written in matrix form as follows: 

♦Herbert Goldstein, "Classical Mechanics," CambridgeiAddison-Wesley, p. 98, 1950. 
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1     1 

3     1 

1     ? 

r 2 

1 3 

2 3 

3 3 

(B36) 

When using the direction cosines for transionnalions, these transformauons arc called 
ortnogonal transformations, and it can be shovm* that 

and 

(837) 

(B38) 

This iast equation relates the inverse matrix to the transjjose nutrLx of the direction 
cosines. 

The transformation of the torques due to base transiational motion can now be made 
as follows: 

■N" s     1    2   3 12     3 (B39) 

The torques referred to the unprimed axes are written in matrix form as 

I' .      s (B40) 

where 

!  o i       o 

o        I 

Premultiply both sides of Eq. (B40) by       ^ which gives 

(B41) 

.   ■NS'. Is 
ii i 

i i (B42) 

In general, the equation for the primed system relating the torque with the inertia 
terms and angular acceleration is 

fRubert L. Halfman,  "Dynamics," Vol. I, F.eading, Massachusetts: Addisen-Wesley, p. 
Z07.  1962.. 
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•Ns'  . I"    .    ""'  . (B43) 

Comparing terms m Eq. (B42) and (1343) and using Eq. (B38) and (B39) leads to 

Is'  . ■  ,    Is     '  ' (B44) 

"  . '  .      s . fB45) 

Equations (B43), (B44), and (845) are now written in the equivalent series form as 

E i.r s "* (B46) 

r    » T—■     r—•        r   u      s   v      uv r    * *—>     v—'        r   u      s   v      uv 

u ■ 1 

3 
s    s   -- s 

Rewrite Eq. (B46) for the mode a as 

3 ' 

-     2-        I. .a 
r 

Nia 
(B49) 

«' ^ i 

or 

3 

L ir L-r'i OB50) 
i ' - I ' s^1 

where 

(a)ZX:aqa si    2, 3 (B51) 

3 3 

^ii E ■:■>:.»:■. ^ 
(   'a' k       4=1    s'^1' 

It should be noted that x,',,, X^, and x^a in Eq. (B51) are actually "x*a, x'fl, and X*a, 
respectively, due to the new notation for the transformation on the torques. 

Substitute Eq. (B51) and (B52) into Eq. (B50) to get 

3 3 l' 
t \   ■ i 

N I '.' L >:'•*:. LL L 'l-'K.t (B53) 
»'I' si k        r-lp'l' 
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Sum over all the mass points to get 

i ' - I ' »I k        r=lp'=l' 

From Eq. (B54) the effective moment of inertia in the r' direction in mode .1 due to a 
base tianslational motion in the p' direction is 

Sum over the modes to get 

3' J 3 

1        « '     l' 1    1 * k       j - 1 

It has been shown that for rotational motion due to a sudden translational motion of the 
base j 

_ 3 

L *'- L  L P^   k"    :   0 ■ (B22) 
» k       1 = 1 

so that / p   - 0 . 

For the case where the principal axes of each mass are orientated parallel to the 
ship's reference axes, Eq. (B55) reduces to 

'.        2-1.   *iaPa (B56) 
1 

Note the similarity between this equation and Eq. (53).  It has been previously stated that 
while the range on r in Eq. (B56) is 1, 2, and 3, the x^ terms are in fact x*     X-a, and 
X*,, respectively.  Therefore, Eqs. (42) and (43), which were applied to Eq. (53) after 
summing over the modes, cannot be used with Eq. (B56). 
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